A solution of the neutron transport equation using spherical harmonics

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1983 J. Phys. A: Math. Gen. 162827
(http://iopscience.iop.org/0305-4470/16/12/028)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 16:47

Please note that terms and conditions apply.

A solution of the neutron transport equation using spherical harmonics

J K Fletcher
United Kingdom Atomic Energy Authority, Risley, Warrington, Cheshire, UK

Received 16 September 1982, in final form 1 February 1983

Abstract

A solution of the neutron transport equation is obtained by expanding the flux $\Phi(\boldsymbol{r}, \boldsymbol{\Omega})$ at position \boldsymbol{r} in direction $\boldsymbol{\Omega}$ as a series of the form:

$$
\Phi(r, \Omega)=\sum_{l=0}^{N}(2 l+1) \sum_{m=0}^{l} P_{l}^{m}(\cos \theta)\left[\psi_{l m}(r) \cos (m \phi)+\gamma_{l m}(r) \sin (m \phi)\right]
$$

Abstract

where $P_{l}^{m}(\cos \theta)$ is the associated Legendre polynomial of order l, m with θ and ϕ the axial and azimuthal angles, respectively, of $\boldsymbol{\Omega} . \psi_{l m}(\boldsymbol{r})$ and $\gamma_{l m}(\boldsymbol{r})$ satisfy first-order differential equations and are determined by eliminating terms with odd l and then using finite-difference or finite-element techniques on the resulting second-order system. Complicated algebra is involved in deriving this latter set of relations and FORTRAN subroutines have been written to calculate the necessary coefficients and specify the relevant differentials.

1. Introduction

The solution of the transport equation using spherical harmonics is well known (Davison 1957, Weinberg and Wigner 1958, Clark and Hansen 1964). However, its implementation as an algorithm in a computer program was, until comparatively recently, thought to be too complicated for other than one-dimensional geometries (Henry 1975) or low-order approximations in higher dimensions (Gelbard 1968). Beginning in 1970, a re-appraisal of the method was undertaken, mainly because other approaches were encountering difficulties (Reed 1972). Also since diffusion theory, which is an adequate approximation for many applications, arises naturally from the spherical harmonics method, further consideration seemed merited.

The flux $\Phi(\boldsymbol{r}, \Omega)$ at location \boldsymbol{r} in the direction of unit vector $\boldsymbol{\Omega}$ is expressed as a series of the form:
$\Phi(\boldsymbol{r}, \boldsymbol{\Omega})=\sum_{l=1}^{\infty}(2 l+1) \sum_{m=0}^{l} P_{l}^{m}(\cos \theta)\left[\psi_{l m}(\boldsymbol{r}) \cos (m \phi)+\gamma_{l m}(\boldsymbol{r}) \sin (m \phi)\right]$
where θ and ϕ are the axial and azimuthal angles, respectively, of $\Omega . P_{l}^{m}(\cos \theta)$ is the associated Legendre polynomial of order l, m and the expansion derives its name
from the fact that

$$
P_{l}^{m}(\cos \theta)\binom{\cos (m \phi)}{\sin (m \phi)}
$$

form unnormalised spherical harmonics (Whittaker and Watson 1954). The series is terminated at some value $l=N$, usually odd, and the approximation denoted by $P N$.

Preliminary investigations in one dimension indicated that the first-order differential equations resulting for the unknown coefficients or moments, $\psi_{l m}(\boldsymbol{r})$ and $\gamma_{l m}(\boldsymbol{r})$, were most conveniently solved by eliminating terms with odd l to yield a second-order system for which many algorithms were known (Fletcher 1974).

Difficulties caused by the complexity of the equations in higher dimensions were surmounted by writing a small computer program to derive the second-order system (Fletcher 1976a) and currently the transport equation may be solved in most geometries of interest using either finite-difference or finite-element approximations (Fletcher 1980).

2. Equations

The mono-energetic transport equations may be written (Clark and Hansen 1964):
$\boldsymbol{\Omega} \cdot \nabla \Phi(\boldsymbol{r}, \boldsymbol{\Omega})+\sigma_{\mathrm{t}}(\boldsymbol{r}) \Phi(\boldsymbol{r}, \boldsymbol{\Omega})=\int_{\boldsymbol{\Omega}^{\prime}}\left(\sigma_{\mathbf{s}}\left(\boldsymbol{\Omega}^{\prime}, \boldsymbol{\Omega}, \boldsymbol{r}\right)+\nu \sigma_{f}(\boldsymbol{r}) k^{-1}\right) \Phi\left(\boldsymbol{r}, \mathbf{\Omega}^{\prime}\right) \mathrm{d} \Omega^{\prime}+\boldsymbol{S}(\boldsymbol{r}, \boldsymbol{\Omega})$
where $\sigma_{\mathrm{t}}(\boldsymbol{r})$ is the total cross section, $\sigma_{\mathbf{s}}\left(\boldsymbol{\Omega}^{\prime}, \boldsymbol{\Omega}, r\right)$ the scatter from $\boldsymbol{\Omega}^{\prime}$ to $\boldsymbol{\Omega}, \nu \sigma_{\mathrm{f}}(\boldsymbol{r})$ the fission production term, assumed isotropic, and $S(\boldsymbol{r}, \boldsymbol{\Omega})$ any external source. For the case of no external source the arbitrary constant k must be adjusted to balance production and loss of neutrons in the system. Further conditions imposed on $\Phi(\boldsymbol{r}, \boldsymbol{\Omega})$ are that it is continuous everywhere and zero at external surfaces for inward directions of $\boldsymbol{\Omega}$. Equation (2) may also be taken as a convenient expression for the multi-group approximation. $\Phi(\boldsymbol{r}, \boldsymbol{\Omega})$ becomes a column vector of fluxes, one for each energy group, $\sigma_{\mathrm{t}}(\boldsymbol{r})$ a diagonal matrix and $\sigma_{\mathrm{s}}\left(\boldsymbol{\Omega}^{\prime}, \boldsymbol{\Omega}, \boldsymbol{r}\right)$ and $\nu \sigma_{\mathrm{f}}(\boldsymbol{r})$ partially or completely filled matrices depending upon the scatter and fission cross sections. Thus the ensuing discussion also applies to the multi-group case.

Equations for $\psi_{l m}(\boldsymbol{r})$ and $\gamma_{l m}(\boldsymbol{r})$ are derived by substituting equation (1) in equation (2) and transforming the $\boldsymbol{\Omega} \cdot \nabla$ terms back to spherical harmonics whose coefficients must then be separately zero because of the orthogonality of these functions. In performing this process use is made of recurrence relations satisfied by $P_{l}^{m}(\cos \theta)$ (Margenau and Murphy 1956).

Further, it is assumed that scatter is independent of the direction of incidence. Hence $\sigma_{\mathrm{s}}\left(\boldsymbol{\Omega}^{\prime}, \boldsymbol{\Omega}, \boldsymbol{r}\right)$ becomes a function of $\boldsymbol{\Omega}^{\prime} \cdot \boldsymbol{\Omega}$ and may be expanded as the series of Legendre polynomials shown below.

$$
\begin{equation*}
\sigma_{\mathbf{s}}\left(\boldsymbol{\Omega}^{\prime}, \boldsymbol{\Omega}, \boldsymbol{r}\right)=\frac{1}{4 \pi} \sum_{l=0}^{\infty}(2 l+1) \sigma^{l}(\boldsymbol{r}) P_{l}\left(\boldsymbol{\Omega}^{\prime} \cdot \boldsymbol{\Omega}\right) . \tag{3}
\end{equation*}
$$

The foregoing procedure yields a coordinate-dependent linked set of first-order differential equations for the moments $\psi_{l m}(r)$ and $\gamma_{l m}(r)$ (Fletcher 1976a).

As an example, for rectangular geometry with $r=(x, y, z)$ then

$$
\begin{equation*}
\boldsymbol{\Omega} \cdot \nabla=\cos \theta \partial / \partial z+\sin \theta \cos \phi \partial / \partial x+\sin \theta \sin \phi \partial / \partial y \tag{4}
\end{equation*}
$$

resulting in the expressions

$$
\begin{align*}
2(l+m+1) & \frac{\partial \psi_{l+1 m}}{\partial z}+2(l-m) \frac{\partial \psi_{l-1 m}}{\partial z}+\frac{\partial \psi_{l-1 m-1}}{\partial x} \\
& -\frac{\partial \gamma_{l-1 m-1}}{\partial y}-\frac{\partial \psi_{l+1 m-1}}{\partial x}+\frac{\partial \gamma_{l+1 m-1}}{\partial y} \\
& +(l+m+2)(l+m+1)\left(\frac{\partial \psi_{l+1 m+1}}{\partial x}+\frac{\partial \gamma_{l+1 m+1}}{\partial y}\right) \\
& -(l-m-1)(l-m)\left(\frac{\partial \psi_{l-1 m+1}}{\partial x}+\frac{\partial \gamma_{l-1 m+1}}{\partial y}\right)+2(2 l+1) \sigma_{l} \psi_{l m}=2 S_{l m} \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
& 2(l+m+1) \frac{\partial \psi_{l+1 m}}{\partial z}+2(l-m) \frac{\partial \psi_{l-1 m}}{\partial z}+\frac{\partial \psi_{l-1 m-1}}{\partial y} \\
&+\frac{\partial \gamma_{l-1 m-1}}{\partial x}-\frac{\partial \psi_{l+1 m-1}}{\partial y}-\frac{\partial \gamma_{l+1 m-1}}{\partial x} \\
&+(l+m+2)(l+m+1)\left(-\frac{\partial \psi_{l+1 m+1}}{\partial y}+\frac{\partial \gamma_{l+1 m+1}}{\partial x}\right) \\
&-(l-m-1)(l-m)-\left(\frac{\partial \psi_{l-1 m+1}}{\partial y}+\frac{\partial \gamma_{l-1 m+1}}{\partial x}\right)+2(2 l+1) \sigma_{l} \psi_{l m}=2 S_{l m}^{\prime} \tag{6}
\end{align*}
$$

Dependence on (x, y, z) is understood and $\sigma_{l}=\sigma_{t}(\boldsymbol{r})-\sigma^{l}(\boldsymbol{r})-\nu \sigma_{f}(r) k^{-1} \delta_{10}$ where $\delta_{i j}$ is unity if $i=j$ and zero otherwise. In the above equations for $m=1$, coefficients of $\psi_{l 0}$ must be doubled because implied $P_{l}^{-1}(\cos \theta)$ terms are not used when substituting the recurrence relations. $S_{l m}^{\prime}$ and $S_{l m}$ arise from the expansion of the source in a similar manner to the flux.

3. Boundary conditions

Because spherical harmonics are independent, continuity of $\Phi(\boldsymbol{r}, \boldsymbol{\Omega})$ implies a similar condition for $\psi_{l m}(\boldsymbol{r})$ and $\gamma_{l m}(\boldsymbol{r})$ across any material interfaces. On an external surface, zero incoming flux is approximated by setting

$$
\begin{equation*}
\int_{\boldsymbol{\Omega} \cdot \boldsymbol{n} \leqslant 0} \boldsymbol{\Omega} \cdot \boldsymbol{n} P_{l}^{m}(\cos \theta)\binom{\cos (m \phi)}{\sin (m \phi)} \Phi(\boldsymbol{r}, \boldsymbol{\Omega}) \mathrm{d} \Omega=0 \tag{7}
\end{equation*}
$$

for l even (Davison 1957) where n is the outwardly directed normal. At reflected boundaries the normal derivative of the moment is zero if the spherical harmonic is even there, and the moment itself is zero in the odd case.

4. Method of solution

All the work to be described in this section has been incorporated over a number of years into the MARC computer code (Fletcher 1976b) and a program specification is given in the appendix.

As an illustration, the equations for $X Y$ geometry and $N=3$ will be considered. Because there is no z dependence, only even functions of θ, i.e. $l+m$ even, occur and $\partial / \partial z$ terms are clearly zero. On eliminating odd l moments, assuming, for clarity, $\sigma_{l}=\sigma_{1}$ if $l \geqslant 1$ and an isotropic external source, there results

$$
\begin{align*}
& \frac{1}{3} \nabla^{2} \psi_{00}-\frac{1}{3} \nabla^{2} \psi_{20}+2 A \psi_{22}+4 B \gamma_{22}-\sigma_{0} \psi_{00}=-S-\nu \sigma_{t} k^{-1} \psi_{00} \tag{8a}\\
& -\frac{1}{3} \nabla^{2} \psi_{00}+\frac{25}{21} \nabla^{2} \psi_{20}-\frac{20}{7} A \psi_{22}-\frac{40}{7} B \gamma_{22}-5 \sigma_{1} \psi_{20}=0 \tag{8b}\\
& \frac{1}{3} A \psi_{00}-\frac{10}{21} A \psi_{20}+\frac{30}{7} \nabla^{2} \psi_{22}-10 \sigma_{1} \psi_{22}=0 \tag{8c}\\
& \frac{1}{3} B \psi_{00}-\frac{10}{21} B \psi_{20}+\frac{15}{7} \nabla^{2} \gamma_{22}-5 \sigma_{1} \gamma_{22}=0 \tag{8d}
\end{align*}
$$

where

$$
\nabla^{2}=\frac{\partial}{\partial x} \frac{1}{\sigma_{1}} \frac{\partial}{\partial x}+\frac{\partial}{\partial y} \frac{1}{\sigma_{1}} \frac{\partial}{\partial y} \quad A=\frac{\partial}{\partial x} \frac{1}{\sigma_{1}} \frac{\partial}{\partial x}-\frac{\partial}{\partial y} \frac{1}{\sigma_{1}} \frac{\partial}{\partial y}
$$

and

$$
B=\frac{1}{2} \frac{\partial}{\partial x} \frac{1}{\sigma_{1}} \frac{\partial}{\partial y}+\frac{\partial}{\partial y} \frac{1}{\sigma_{1}} \frac{\partial}{\partial x} .
$$

A finite-difference or a finite-element approximation may be used to solve the foregoing system, the advantage of the latter being the ability to deal conveniently with irregular shapes (Fletcher 1980).

Equations $8(a)-8(d)$ could be solved simultaneously for ψ_{00} to γ_{22}. However, to prevent N restricting problem size, each relation in the set is treated in turn as a diffusion type equation with a modified source. Thus ($8 a$) is evaluated for ψ_{00} initially using a guess for other moments. ($8 b$) yields ψ_{20} with the new values of ψ_{00} incorporated. This procedure calculates new ψ_{22} and γ_{22} from ($8 c$) and ($8 d$) respectively. The whole process is then iterated until changes in the moments between evaluations are less than desired accuracy criteria. For eigenvalue problems (zero external source) the normal fission source powering technique is utilised (Fletcher 1974).

In the multi-group case, moment equations for the highest energy group are solved once through followed by those for the next highest and so on down to the lowest, using latest values where possible to take advantage of the predominant downscatter. The general iteration then takes the form outlined for the one-group approximation.

If $N>3$ in two dimensions or $N>1$ in three dimensions, the second-order system is complicated and difficult to derive, as may be inferred from equations (5) and (6). However, the quantity of arithmetic involved is trivial in computer terms and a small program has been written to derive the coefficients and associated differential operators for the moments in each equation. Using this precalculation, the method outlined previously is then able to deal with approximations for arbitrary N and most geometries of interest.

It should be emphasised that the coding which produces the equations for solution provides, as well as coefficients, the moments and differentials involved and inputs the results to the solution algorithm without any involvement of the program user. To move from a P1 to a P7 approximation necessitates only the replacement of 1 by 7 in the problem data. N is usually odd because $N=2 j$ or $2 j+1$, with j any integer, results in the same number of equations for solution (Fletcher 1974) and hence the
higher more accurate value is used, the only limit being permitted calculation cost or running time.

As a first example, the problem displayed in figure 1 has been solved using marc. Because there is no scatter, SN methods have difficulty in producing a solution (Reed 1972). Table 1 shows ψ_{00} (the scalar flux) 0.1 centimetres from BC for various N using a mesh-centred finite-difference representation on a uniform 0.2 cm grid. In table 2 and figure $2, \psi_{00}$ along AC for $N=7$ is presented along with values from a finite-element calculation using the same mesh. The lack of scatter implies that the exact solution becomes an integral of exponential terms from the source region and results obtained in this manner are also given in table 1.

Table 1. Scalar flux $\left(\psi_{00}\right) 0.1$ centimetres from BC for various N. A and C are the locations given in figure 1.

			Approximation Distance		
P1	P3	P7	Exact		
0.1	$0.194754 \mathrm{E}-2$	$0.253217 \mathrm{E}-2$	$0.262871 \mathrm{E}-2$	$0.259878 \mathrm{E}-2$	$0.26033 \mathrm{E}-2$
0.3	0.191495	0.250070	0.259490	0.256526	0.25691
0.5	0.185138	0.243893	0.252860	0.249955	0.25025
0.7	0.175990	0.234917	0.243233	0.240414	0.24083
0.9	0.164490	0.223480	0.230962	0.228249	0.22863
1.1	0.151179	0.210019	0.216494	0.213894	0.21438
1.3	0.136657	0.195048	0.200393	0.197913	0.19858
1.5	0.121536	0.179120	0.183358	0.181045	0.18180
1.7	0.106397	0.162762	0.165960	0.163855	0.16460
1.9	$0.917421 \mathrm{E}-3$	0.146432	0.148662	0.146789	0.14754
2.1	0.779743	0.130514	0.131854	0.130220	0.13076
2.3	0.653786	0.115310	0.115858	0.114461	0.11490
2.5	0.541254	0.101046	0.100922	$0.997550 \mathrm{E}-3$	0.10007
2.7	0.442803	$0.878739 \mathrm{E}-3$	$0.872138 \mathrm{E}-3$	0.862666	$0.86523 \mathrm{E}-3$
2.9	0.358369	0.758823	0.748264	0.740836	0.74261
3.1	0.287119	0.651027	0.637841	0.632253	0.63350
3.3	0.227923	0.555220	0.540573	0.536575	0.53694
3.5	0.179414	0.470927	0.455777	0.453086	0.45285
3.7	0.140150	0.397434	0.382520	0.380844	0.38026
3.9	0.108720	0.333877	0.319736	0.318793	0.31793

A second example is shown in figure 3 and this has been solved using a finiteelement approximation with nodes at the points specified in the diagram.

Vacuum boundary conditions clearly correspond to replacing the surface with purely absorbing material extending to infinity and it is of interest to see at what rate the approximate condition of equation (7) and the use of an absorbing medium tend to the same result.

For practical purposes, 5 cm of absorber represents an infinite extent and this is added on the appropriate surfaces. ψ_{00} at A and B for various N is shown in table 3 and figure 4. It can be seen that the A values almost agree by P11 but roughly a 2% variation at B is still present for P13. The difference is unaffected by increasing the absorber thickness. However, it should be mentioned that this is a difficult problem and agreement would usually occur for smaller N.

Table 2. Scalar flux along AC for test problem 1 with $N=7$.

Position			Finite difference	Finite element
A	0	0		0.568331
	0.1	0.1	0.564856	
	0.2	0.2		0.562668
	0.3	0.3	0.553415	
	0.4	0.4		0.544784
	0.5	0.5	0.527844	
	0.6	0.6		0.511332
	0.7	0.7	0.482768	
	0.8	0.8		0.453374
	0.9	0.9	0.405869	
	1.0	1.0		0.349393
	1.1	1.1	0.275756	
	1.2	1.2		0.166535
	1.3	1.3	$0.909675 \mathrm{E}-1$	
	1.4	1.4		0.652 485E-1
	1.5	1.5	$0.439958 \mathrm{E}-1$	
	1.6	1.6		0.352 675E-1
	1.7	1.7	$0.262964 \mathrm{E}-1$	
	1.8	1.8		0.218 533E-1
	1.9	1.9	0.176 903E-1	
	2.0	2.0		$0.137908 \mathrm{E}-1$
	2.1	2.1	$0.108713 \mathrm{E}-1$	
	2.2	2.2		0.885 426E-2
	2.3	2.3	$0.708317 \mathrm{E}-2$	
	2.4	2.4		$0.576711 \mathrm{E}-2$
	2.5	2.5	$0.465516 \mathrm{E}-2$	
	2.6	2.6		$0.380459 \mathrm{E}-2$
	2.7	2.7	0.309 396E-2	
	2.8	2.8		$0.253811 \mathrm{E}-2$
	2.9	2.9	$0.207663 \mathrm{E}-2$	
	3.0	3.0		$0.170979 \mathrm{E}-2$
	3.1	3.1	$0.140854 \mathrm{E}-2$	
	3.2	3.2		$0.116166 \mathrm{E}-2$
	3.3	3.3	0.963 972E-3	
	3.4	3.4		$0.795199 \mathrm{E}-3$
	3.5	3.5	0.664 280E-3	
	3.6	3.6		0.547 928E-3
	3.7	3.7	$0.461349 \mathrm{E}-3$	
	3.8	3.8		$0.379668 \mathrm{E}-3$
	3.9	3.9	0.322 786E-3	
C	4.0	4.0		0.264 252E-3

5. Discussion

A difficulty with the method is the treatment of internal voids where, since $\sigma_{l}=0$, a zero denominator results in equation (8). The usual approach is to use cross sections which are about 10^{-7} of normal magnitude and this procedure works satisfactorily. However, a more rigorous algorithm is desirable.

The mARC code, itself, is substantially complete apart from, possibly, a link to a mesh-generation package so that advantage of the flexibility of the finite-element approach may be made use of without too much tedious data input.

Figure 1. Transport theory test problem 1; $\sigma_{\mathrm{t}}=1$ and $\sigma_{l}=0$.

Figure 3. Test problem 2: for the unit source in the shaded region $\sigma_{t}=0.75, \sigma_{0}=0.25$ and $\sigma_{t}=0.75$ for $l>0$.

Figure 2. Scalar flux (ψ_{00}) along AC for test problem 1 with $N=7: \times$ denotes the finite-element and the finite-difference technique.

Figure 4. Dependence of the scalar flux on N at A and B for test problem 2. A comparison of boundary conditions is given; the full curve denotes the vacuum surface and the broken curve denotes the extended absorber.

Table 3. Variation with N of the scalar fiux at A and B for test problem 2.

	A		B	
\boldsymbol{N}	Vacuum	Added absorber	Vacuum	Added absorber
1	1.312	1.290	0.2924	0.2460
3	1.724	1.696	0.1944	0.2063
5	1.846	1.822	0.1669	0.1810
7	1.869	1.855	0.1634	0.1730
9	1.867	1.859	0.1643	0.1714
11	1.860	1.854	0.1656	0.1709
13	1.853	1.852	0.1666	0.1710

6. Conclusions

A solution of the multi-group transport equation using spherical harmonics has been successfully implemented as a computer code. Alternative finite-difference and finiteelement representations are available, the latter enabling irregular meshes to be used.

Appendix. marc

(1) Name of code: MARc.
(2) Computer: ICL2980, IBM3081.
(3) Nature of physical problem solved: the multigroup, three-dimensional neutron transport and diffusion equations.
(4) Method: the flux is expanded as a series of spherical harmonics. Odd-parity terms are eliminated from the resulting first-order equations for the coefficients of the series to yield a second-order system that is solved by a finite-element or finite-difference approximation.
(5) Typical running times: cannot be specified since running time is dependent on the number of dimensions, mesh points or energy groups.
(6) Unusual features: computer routines are used to derive the equations for solution.
(7) Status: in use for production work.
(8) References: Fletcher J K. A Users Guide to the MARC/PN Computer Code. TRG report 2911(R)1976. United Kingdom Atomic Energy Authority.
(9) Machine requirements: problem dependent.
(10) Material available: source code available from NEA Data Bank, 9119 Gif-surYvette, Cedex, France, or RSIC, ORNL, PO Box X, Oak Ridge, Tennessee, USA.

References

——1976a Further Work on the Solution of the Multigroup Transport Equation Using Spherical Harmonics TRG Report 2849(R), United Kingdom Atomic Energy Authority

- 1976b A Users Guide to the MARC/PN Computer Code TRG Report 2911(R), United Kingdom Atomic Energy Authority
1980 A Finite Element Option for the MARC Transport/Diffusion Theory Code ND-5-560(R), United Kingdom Atomic Energy Authority
Gelbard E M 1968 Spherical Harmonics Methods. Computing Methods in Reactor Physics (New York: Gordon and Breach) ch 4
Henry A F 1975 Nuclear Reactor Analysis (New York: MIT Press) ch 8
Margenau H and Murphy G M 1956 The Mathematics of Physics and Chemistry (New Jersey: Van Nostrand) ch 3
Reed W H 1972 Nucl. Sci. Eng. 49 10-9
Weinberg A M and Wigner E P 1958 The Physical Theory of Neutron Chain Reactors (Chicago: University Press) ch 9
Whittaker E T and Watson G N 1954 Modern Analysis (Cambridge: CUP) ch 19

