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Abstract. A solution of the neutron transport equation is obtained by expanding the flux 
O(r, nj at position r in direction fl as a series of the form: 

N I 

1=0 m -0 
(O(r,nj= Z (21+1) X ~ ; " ( c o s e ) [ ~ ~ , ( r ) c o s ( m d ) + y ~ , ~ r ) s i n ~ m ~ ~ I  

where P;"(cos B )  is the associated Legendre polynomial of order 1, m with B and I$ the 
axial and azimuthal angles, respectively, of n. and y l m ( r )  satisfy first-order differen- 
tial equations and are determined by eliminating terms with odd 1 and then using 
finite-difference or finite-element techniques on the resulting second-order system. Com- 
plicated algebra is involved in deriving this latter set of relations and FORTRAN subroutines 
have been written to calculate the necessary coefficients and specify the relevant differen- 
tials. 

1. Introduction 

The solution of the transport equation using spherical harmonics is well known (Davison 
1957, Weinberg and Wigner 1958, Clark and Hansen 1964). However, its 
implementation as an algorithm in a computer program was, until comparatively 
recently, thought to be too complicated for other than one-dimensional geometries 
(Henry 1975) or low-order approximations in higher dimensions (Gelbard 1968). 
Beginning in 1970, a re-appraisal of the method was undertaken, mainly because 
other approaches were encountering difficulties (Reed 1972). Also since diffusion 
theory, which is an adequate approximation for many applications, arises naturally 
from the spherical harmonics method, further consideration seemed merited. 

The flux @(r, 0) at location r in the direction of unit vector n is expressed as a 
series of the form: 

I = 1  m =O 

where 6 and q5 are the axial and azimuthal angles, respectively, of n. P;"(cos 6) is 
the associated Legendre polynomial of order I ,  m and the expansion derives its name 
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from the fact that 

form unnormalised spherical harmonics (Whittaker and Watson 1954). The series is 
terminated at some value I = N, usually odd, and the approximation denoted by PN. 

Preliminary investigations in one dimension indicated that the first-order differen- 
tial equations resulting for the unknown coefficients or moments, $fm(r) and y lm(r ) ,  
were most conveniently solved by eliminating terms with odd I to yield a second-order 
system for which many algorithms were known (Fletcher 1974). 

Difficulties caused by the complexity of the equations in higher dimensions were 
surmounted by writing a small computer program to derive the second-order system 
(Fletcher 1976a) and currently the transport equation may be solved in most geometries 
of interest using either finite-difference or finite-element approximations (Fletcher 
1980). 

2. Equations 

The mono-energetic transport equations may be written (Clark and Hansen 1964): 

(2) 

where a,@) is the total cross section, as($", a, r )  the scatter from a' to a, vuf(r) the 
fission production term, assumed isotropic, and S(r,  a) any external source. For the 
case of no external source the arbitrary constant k must be adjusted to balance 
production and loss of neutrons in the system. Further conditions imposed on @(r, a) 
are that it is continuous everywhere and zero at external surfaces for inward directions 
of 42. Equation (2) may also be taken as a convenient expression for the multi-group 
approximation. @(r, a) becomes a column vector of fluxes, one for each energy group, 
at (r )  a diagonal matrix anda,(fl', a, r )  and vaf(r) partially or completely filled matrices 
depending upon the scatter and fission cross sections. Thus the ensuing discussion 
also applies to the multi-group case. 

Equations for $ lm(r )  and ylm(r)  are derived by substituting equation (1) in equation 
(2) and transforming the Cl V terms back to spherical harmonics whose coefficients 
must then be separately zero because of the orthogonality of these functions. In 
performing this process use is made of recurrence relations satisfied by P;"(cos 8) 
(Margenau and Murphy 1956). 

Further, it is assumed that scatter is independent of the direction of incidence. 
Hence as(fl', a, r )  becomes a function of 42 and may be expanded as the series 
of Legendre polynomials shown below. 

V@(r, a) +at(r )@(r ,  a) = (a,($", a, r )  + vadr)k-')@(r, a') dfY+ S(r ,  a) I,. 

1 "  
47r I=O u,(a', n, r )  = - (21 + l)af(r)Pl(nl a). (3) 

The foregoing procedure yields a coordinate-dependent linked set of first-order 
differential equations for the moments $lm(r)  and ylm(r) (Fletcher 1976a). 

As an example, for rectangular geometry with r = (x, y, z )  then 

Cl - V = cos 8a/az +sin 8 cos da/ax +sin 8 sin da/ay (4 ) 
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resulting in the expressions 

and 
W i + l m  +2(f -m)- W - i m + a 4 i - i m - i  

az a2 ay  
2(1 + m  + 1)- 

) +2(21+ 1)m41m = 2Sim. (6) -(I - m  - 1)(1 - m )  - (W---+l + a y i - i m + i  

ax 
Dependence on ( x ,  y, z )  is understood and ai =a,@) - a ' ( r )  - ~ a ~ ( r ) k - ~ S l ~  where Sii is 
unity if i = j and zero otherwise. In the above equations for m = 1,  coefficients of $10 
must be doubled because implied P;' (cos 0 )  terms are not used when substituting 
the recurrence relations. Si, and Sf, arise from the expansion of the source in a 
similar manner to the flux. 

3. Boundary conditions 

Because spherical harmonics are independent, continuity of Q(r, 42) implies a similar 
condition for 41m (r) and ylm (r) across any material interfaces. On an external surface, 
zero incoming flux is approximated by setting 

for 1 even (Davison 1957) where n is the outwardly directed normal. At reflected 
boundaries the normal derivative of the moment is zero if the spherical harmonic is 
even there, and the moment itself is zero in the odd case. 

4. Method of solution 

All the work to be described in this section has been incorporated over a number of 
years into the MARC computer code (Fletcher 1976b) and a program specification is 
given in the appendix. 
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As an illustration, the equations for XY geometry and N = 3 will be considered. 
Because there is no z dependence, only even functions of e, i.e. 1 + m  even, occur 
and d/az terms are clearly zero. On eliminating odd 1 moments, assuming, for clarity, 
(TI = UI if 1 3  1 and an isotropic external source, there results 

fV2JIoo - $V2420 + 2A42z + 48~22  - ~ 0 4 0 0  = -S - V C J C - ' ~ ~ ~  (8a )  

(86 1 

( 8 c )  

- $V2$W + gV2420 - ?A422 - ?By22 - 5U11/120 = 0 

$A400 - EA420 + yV242z - 10~1422 = 0 

a l a  a l a  a l a  a l a  
ax u1 ax ay u1 ay ax U~ ax ay U~ ay 

A =  _ _ - _ _ _ _  v =---+--- 

and 

l a l a  a l a  
2 ax U~ ay ay U~ ax '  

B =  _ _ _ _  +--- 

A finite-difference or a finite-element approximation may be used to solve the 
foregoing system, the advantage of the latter being the ability to deal conveniently 
with irregular shapes (Fletcher 1980). 

Equations 8(a) -8(d)  could be solved simultaneously for rlo0 to y22. However, to 
prevent N restricting problem size, each relation in the set is treated in turn as a 
diffusion type equation with a modified source. Thus (8a )  is evaluated for +boo initially 
using a guess for other moments. (86) yields 4z0 with the new values of $00 incorpor- 
ated. This procedure calculates new 422 and y Z 2  from (8c) and ( 8 4  respectively. The 
whole process is then iterated until changes in the moments between evaluations are 
less than desired accuracy criteria. For eigenvalue problems (zero external source) 
the normal fission source powering technique is utilised (Fletcher 1974). 

In the multi-group case, moment equations for the highest energy group are solved 
once through followed by those for the next highest and so on down to the lowest, 
using latest values where possible to take advantage of the predominant downscatter. 
The general iteration then takes the form outlined for the one-group approximation. 

If N > 3 in two dimensions or N > 1 in three dimensions, the second-order system 
is complicated and difficult to derive, as may be inferred from equations ( 5 )  and (6). 
However, the quantity of arithmetic involved is trivial in computer terms and a small 
program has been written to derive the coefficients and associated differential operators 
for the moments in each equation. Using this precalculation, the method outlined 
previously is then able to deal with approximations for arbitrary N and most geometries 
of interest. 

It should be emphasised that the coding which produces the equations for solution 
provides, as well as coefficients, the moments and differentials involved and inputs 
the results to the solution algorithm without any involvement of the program user. 
To move from a P1 to a P7 approximation necessitates only the replacement of 1 by 
7 in the problem data. N is usually odd because N = 2j or 2j + 1, with j any integer, 
results in the same number of equations for solution (Fletcher 1974) and hence the 
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higher more accurate value is used, the only limit being permitted calculation cost or 
running time. 

As a first example, the problem displayed in figure 1 has been solved using MARC. 

Because there is no scatter, SN methods have difficulty in producing a solution (Reed 
1972). Table 1 shows t,boo (the scalar flux) 0.1 centimetres from BC for various N 
using a mesh-centred finite-difference representation on a uniform 0.2 cm grid. In 
table 2 and figure 2, t,boo along AC for N = 7 is presented along with values from a 
finite-element calculation using the same mesh. The lack of scatter implies that the 
exact solution becomes an integral of exponential terms from the source region and 
results obtained in this manner are also given in table 1. 

Table 1. Scalar flux (ILoo) 0.1 centimetres from BC for various N. A and C are the 
locations given in figure 1. 

Approximation 
Distance P1 P3 P5 P7 Exact 

0.1 
0.3 
0.5 
0.7 
0.9 
1.1 
1.3 
1.5 
1.7 
1.9 
2.1 
2.3 
2.5 
2.7 
2.9 
3.1 
3.3 
3.5 
3.7 
3.9 

0.194 754E-2 
0.191 495 
0.185 138 
0.175 990 
0.164 490 
0.151 179 
0.136657 
0.121 536 
0.106 397 
0.917 421E-3 
0.779 743 
0.653 786 
0.541 254 
0.442 803 
0.358 369 
0.287 119 
0.227 923 
0.179 414 
0.140 150 
0.108 720 

0.253 217E-2 
0.250 070 
0.243 893 
0.234 917 
0.223 480 
0.210 019 
0.195 048 
0.179 120 
0.162 762 
0.146 432 
0.130514 
0.115 310 
0.101 046 

0.758 823 
0.651 027 
0.555 220 
0.470 927 
0.397 434 
0.333 877 

0.878 7398-3 

0.262 871E-2 
0.259 490 
0.252 860 
0.243 233 
0.230 962 
0.216 494 
0.200 393 
0.183 358 
0.165 960 
0.148 662 
0.131 854 
0.115 858 
0.100 922 

0.748 264 
0.637 841 
0.540 573 
0.455 777 
0.382 520 
0.319 736 

0.872 138E-3 

0.259 878E-2 
0.256 526 
0.249 955 
0.240 414 
0.228 249 
0.213 894 
0.197 913 
0.181 045 
0.163 855 
0.146 789 
0.130 220 
0.114461 

0.862 666 
0.740 836 
0.632 253 
0.536 575 
0.453 086 
0.380 844 
0.318 793 

0.997 550E-3 

0.260 33E-2 
0.256 91 
0.250 25 
0.240 83 
0.228 63 
0.214 38 
0.198 58 
0.181 80 
0.164 60 
0.147 54 
0.130 76 
0.114 90 
0.100 07 

0.742 61 
0.633 50 
0.536 94 
0.452 85 
0.380 26 
0.317 93 

0.865 23E-3 

A second example is shown in figure 3 and this has been solved using a finite- 
element approximation with nodes at the points specified in the diagram. 

Vacuum boundary conditions clearly correspond to replacing the surface with 
purely absorbing material extending to infinity and it is of interest to see at what rate 
the approximate condition of equation (7) and the use of an absorbing medium tend 
to the same result. 

For practical purposes, 5 cm of absorber represents an infinite extent and this is 
added on the appropriate surfaces. GOO at A and B for various N is shown in table 
3 and figure 4. It can be seen that the A values almost agree by P11 but roughly a 
2% variation at B is still present for P13. The difference is unaffected by increasing 
the absorber thickness. However, it should be mentioned that this is a difficult problem 
and agreement would usually occur for smaller N. 
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Table 2. Scalar flux along AC for test problem 1 with N = 7. 

Position Finite difference Finite element 

A 0  0 
0.1 0.1 
0.2 0.2 
0.3 0.3 
0.4 0.4 
0.5 0.5 
0.6 0.6 
0.7 0.7 
0.8 0.8 
0.9 0.9 
1.0 1.0 
1.1 1.1 
1.2 1.2 
1.3 1.3 
1.4 1.4 
1.5 1.5 
1.6 1.6 
1.7 1.7 
1.8 1.8 
1.9 1.9 
2.0 2.0 
2.1 2.1 
2.2 2.2 
2.3 2.3 
2.4 2.4 
2.5 2.5 
2.6 2.6 
2.7 2.7 
2.8 2.8 
2.9 2.9 
3.0 3.0 
3.1 3.1 
3.2 3.2 
3.3 3.3 
3.4 3.4 
3.5 3.5 
3.6 3.6 
3.7 3.7 
3.8 3.8 
3.9 3.9 

C 4.0 4.0 

0.564 856 

0.553 415 

0.527 844 

0.482 768 

0.405 869 

0.275 756 

0.909 675E-1 

0.439 958E-1 

0.262 964E-1 

0.176 903E-1 

0.108 713E-1 

0.708 317E-2 

0.465 516E-2 

0.309 396E-2 

0.207 663E-2 

0.140 854E-2 

0.963 972E-3 

0.664 28OE-3 

0.461 349E-3 

0.322 786E-3 

0.568 331 

0.562 668 

0.544 784 

0.51 1 332 

0.453 374 

0.349 393 

0.166 535 

0.652 485E-1 

0.352 675E-1 

0.218 533E-1 

0.137 908E-1 

0.885 426E-2 

0.576 711E-2 

0.380 459E-2 

0.253 811E-2 

0.170979E-2 

0.116 166E-2 

0.795 199E-3 

0.547 928E-3 

0.379 668E-3 

0.264 252E-3 

5. Discussion 

A difficulty with the method is the treatment of internal voids where, since ( T ~  = 0, a 
zero denominator results in equation (8). The usual approach is to use cross sections 
which are about lo-’ of normal magnitude and this procedure works satisfactorily. 
However, a more rigorous algorithm is desirable. 

The MARC code, itself, is substantially complete apart from, possibly, a link to a 
mesh-generation package so that advantage of the flexibility of the finite-element 
approach may be made use of without too much tedious data input. 
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Reflective boundary 

A 0 2  1 

Unit source I 

I 

Reflective 4cmpi[ Vacuum 0 1  . 
~ 

boundary 
L 

0 
A 

D Vacuum C 

I 

i 
1.1 2,2 3.3 4.4 

c 
Coordinates (cm) 

Figure 1. Transport theory test problem 1; U, = 1 
and U, = 0. 

Figure 2. Scalar flux (ILo0) along AC for test problem 
1 with N = 7 :  x denotes the finite-element and 0 
the finite-difference technique. 

Reflective boundary 
A 0 5  B 

0 Vacuum c 

81 

0300 ' 
A 

1 9 0  0 2 8 0  
1 8 0  0260 iB(- - - _ _ _  

170 02LO b 

160  0220 \ /  
+- 

150  

1 4 0  

130 

1 2 0  

\ 
'\ '. - --- - _ _ _ _  0180 

0 160 1 3  5 7 9 11 13  

O2I0 I\ 
0.200 1 ' 

- --- - _ _ _ _  
0 160 

1 3  5 7 9 11 13  
Order of approximation ( N )  

Figure 3. Test problem 2: for the unit  source in the Figure 4. Dependence of the scalar flux on N at A 
shaded region U, = 0.75, vo = 0.25 and UI = 0.75 for and B for test problem 2. A comparison of boundary 
l > O .  conditions is given; the full curve denotes the 

vacuum surface and the broken curve denotes the 
extended absorber. 
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Table 3. Variation with N of the scalar fiux at A and B for test problem 2. 

A B 

N 
Added 

Vacuum absorber Vacuum 

1 
3 
5 
7 
9 

11 
13 

1.312 1.290 0.2924 
1.724 1.696 0.1944 
1.846 1.822 0.1669 
1.869 1.855 0.1634 
1.867 1.85Y 0.1643 
1.860 1.854 0.1656 
1.853 1.852 0.1666 

Added 
absorber 

0.2460 
0.2063 
0.1810 
0.1730 
0.1714 
0.1709 
0.1710 

6. Conclusions 

A solution of the multi-group transport equation using spherical harmonics has been 
successfully implemented as a computer code. Alternative finite-difference and finite- 
element representations are available, the latter enabling irregular meshes to be used. 

Appendix. MARC 

(1) Name of code: MARC. 

(2) Computer: ICL2980, IBM3081. 
(3) Nature of physical problem solved: the multigroup, three-dimensional neutron 
transport and diffusion equations. 
(4) Method: the flux is expanded as a series of spherical harmonics. Odd-parity terms 
are eliminated from the resulting first-order equations for the coefficients of the series 
to yield a second-order system that is solved by a finite-element or finite-difference 
approximation. 
( 5 )  Typical running times: cannot be specified since running time is dependent on the 
number of dimensions, mesh points or energy groups. 
(6) Unusual features: computer routines are used to derive the equations for solution. 
(7) Status: in use for production work. 
(8) References: Fletcher J K. A Users Guide to the MARC/PN Computer Code. 
TRG report 291 1(R)1976. United Kingdom Atomic Energy Authority. 
(9) Machine requirements: problem dependent. 
(10) Material available: source code available from NEA Data Bank, 9119 Gif-sur- 
Yvette, Cedex, France, or RSIC, ORNL, PO Box X, Oak Ridge, Tennessee, USA. 
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